Privacy Policy Fibromialgia e Morchella esculenta - Micomedicina

Fibromialgia e Morchella esculenta

Fibromialgia e Morchella esculenta nella Micomedicina

 

Questo mese inizieremo un trittico bello e interessante che ci accompagnerà per tutta l’estate e dove si racchiude buona parte dell’aspetto teorico-concettuale della micomedicina: parleremo del trittico fibromialgia, CFS (sindrome della stanchezza cronica) e MCS (sensibilità chimica multipla), sempre  con la nostra lente olistico-simbiotica filtrata attraverso i funghi. Iniziamo con la Fibromialgia, malattia che prende principalmente il sesso femminile, spesso confusa con malattie reumatologiche varie o con forme depressive, tanto che ancora oggi nosograficamente ci sono discussioni su come classificarla e spesso viene scambiata come una  sindrome ansiosa con  somatizzazioni. Ho parlato del trittico perché è nel contesto di queste tre patologie, in cui spesso si mescolano i sintomi, che ritengo possa svilupparsi a pieno il pensiero della micomedicina, partendo da una unica  eziologia : il Micoplasma. Il fungo di riferimento di questo mese è la Morchella esculenta un buon fungo commestibile (primaverile) che cresce spontaneo e ultimamente anche coltivato, con notevoli proprietà medicinali: è un potentissimo antiossidante che unito alle sviluppate capacità chelanti (vedi in seguito sui metalli pesanti), a quelle antinfiammatorie (è paragonato al Diclofenac)  e soprattutto alle capacità antibatteriche (esopolisaccaridi) che servono contro il Micoplasma, rappresenta il nutraceutico di riferimento per la Fibromialgia………

1°Articolo; 2°Articolo; 3°Articolo

{jcomments on}

Tornando al Micoplasma è molto importante un articolo di ricercatori brasiliani (inserito di seguito nel paginone centrale)  sul concetto di proteino immuno dominanza (cioè la gestione del sistema immunitario dalle  proteine e nucleotidi dell’ospite): essendo il più piccolo tra i batteri  fornito di nucleo ma senza parete cellulare, si nasconde all’interno delle cellule agganciandosi con speciali fibrille e oltrepassando la parete grazie alle piccole dimensioni e se ne sta buono per anni inserendo il proprio dna come un’appendice di quello della cellula parassitata e dando scarsi segni della propria presenza, queste cellule (soprattutto miocellule, cellule nervose e cartilaginee/ossee)  a seguito di un trauma fisico o emotivo, subiscono una sorta di cannibalizzazione dall’interno : l’acido nucleico e le proteine del Micoplasma organizzate sottraggono steroli dalla cellula soprattutto dalla parete cellulare, che per questo motivo può scoppiare liberando l’ospite  oppure subire lesioni (i famosi trigger points della fibromialgia), e fino a qui nulla di eccezionale se non si trattasse di un batterio che può sopravvivere anche in una forma minerale e trasformarsi (pleomorfismo) in forme virali o batteriche passando indifferentemente dalle piante agli animali fino all’uomo e viceversa. E il Mico (plasma) non è casuale neppure nel nome, visto che convive dentro di noi grazie alla simbiosi. Che sia il Micoplasma la causa di tutto? Il concetto di proteino immuno dominanza diventa comprensibile quando il depredare la membrana cellulare porta la cellula stessa a subire mutazioni quali quantitative delle stesse proteine di membrana che possono determinare fenomeni autoimmunitari o manifestazioni allergiche o tumori. Ed il Micoplasma fermentans ha anche un’origine  “militare” dalla guerra biologica degli anni 50, derivando da una mutazione genetica indotta all’epoca sulla  Brucella abortus, e ritrovata ancora nei militari americani veterani della prima guerra del golfo. Proprio per questo motivo al 2) assieme ad un interessante articolo sul trattamento naturale della fibromialgia secondo il protocollo SHINE (Sleep sonno, Hormonal balance equilibrio ormonale,  Immunity immunità,  Nutrition nutrizione Emotions emozioni)   ho voluto fare una piccola ma interessante review  in italiano sui Micoplasmi. Accanto ai Micoplasmi,  c’è l’aspetto fondamentale della 3) fitochelazione che rappresenta il meccanismo con cui i funghi ci salvano dai metalli pesanti, in cui la presenza della Candida albicans ne è l’epifenomeno.  La fitochelazione è prodotta in particolare dalla chitina e dal chitosano presenti nei funghi come in alghe e nei crostacei, tramite i tioni ed i gruppi sulfidrilici, ed agisce come una sostanza adsorbente che blocca le sostanze, come i metalli, che hanno cariche ioniche polari con i loro effetti riducenti (ROS) consequenziali all’organismo che li contiene.  Pertanto le migliori sostanze chelanti sono i macrofunghi  che non solo hanno parecchia chitina (al contrario della Candida albicans) ma anche altre sostanze con una doppia azione (chelante-antiossidante) come gli enzimi SOD (citocromi) nonché sostanze antibiotiche che agiscono contro i micoplasmi. La Candida rappresenta, come i Micoplasmi, uno stato di immunodepressione dell’organismo per la presenza dei metalli pesanti e di altre sostanze xeno-biotiche, che poi può estrinsecarsi ulteriormente in patologie sistemiche e oncologiche.4) Carenza di Vitamina D2 e fibromialgia è il quarto articolo in cui il potere dei funghi si estrinseca con una sostanza come la Vitamina D2 di cui ogni fungo, in quantità variabile, ne è comunque  ricco. Altro articolo rappresentativo di tutti i contributi che la fitoterapia dà vs la fibromialgia  è quello 1) sulla Griffonia simplicifolia che fornisce una sostanza antidepressiva analoga alla serotonina la 5 idrossitriptamina, che agisce per il grande capitolo della patologia psichica strettamente correlata all’eccessivo consumo di aminoacidi argigina e triptofano dovuto alla presenza del micoplasma. Altre piante che agiscono con un  meccanismo sostitutivo a sostanze carenti nella fibromialgia sono la  Maca (Lepidium meyenii) per quanto riguarda l’assetto ormonale DHEA etc e l’Uncaria tomentosa (unghia di gatto) come immunostimolante.Ultimo articolo è quello sull’osteopatia nel trattamento della fibromialgia ed ospita un gradito contributo del nostro osteopata Alessandro Di Branco insieme ad un piccolo riassunto sulle potenzialità dell’osteopatia in questa controversa patologia.

Buona lettura

Dott Maurizio Bagnato MD

Antioxidant Activity of Intracellular Polysaccharides (IPS) from Morchella esculenta L.

Morchella esculenta


Abstract The crude intracellular polysaccharides (CIPSMB and CIPSMH) extracted from the mycelia of Morchella esculenta L. from Beijing (MB) and Huaiyin (MH) areas by water extraction and alcohol precipitation were subjected to decolorization and deproteinization to obtain purified CIPSMB and CIPSMH, denoted as PIPSMB and PIPSMH, respectively. The scavenging effects of the four samples on hydroxyl and superoxide anion free radicals were tested by salicylic acid method and pyrogallol autoxidation method, respectively. It was observed that all the four samples were able to obviously scavenge both free radicals, displaying a positive concentration-dependent response in a concentration range between 1 mg/mL and 5 mg/mL. No statistical significance in the ability to scavenge superoxide anion free radicals was found between CIPSMB and PIPSMB and between CIPSMH and PIPSMH. CIPSMB and CIPSMH had no significant difference in the ability to scavenge hydroxyl free radicals. However, there was a significant difference in the ability to scavenge hydroxyl free radicals observed between CIPSMH and PIPSMH; the scavenging rate of CIPSMH at a concentration of 5 mg/mL was only 22.57%, whereas that of PIPSMH was as high as 46.27%, indicating that purification greatly enhances the hydroxyl free radical scavenging capacity of intracellular polysaccharides from the mycelia of Morchella esculenta L. from Huaiyin area.

Service

E-mail this article

arrow

Add to my bookshelf

arrow

Add to citation manager

arrow

E-mail Alert

arrow

RSS

Articles by authors

arrow

WANG Xin-Feng

arrow

YANG Fang

arrow

WENG Liang

arrow

GE Qun-Mei

arrow

CHEN Shan-Shan

Key words Morchella esculenta L. intracellular polysaccharide antioxidant activity

Received: 2010-09-14; Published: 2010-12-29

Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta.

Fu L, Wang Y, Wang J, Yang Y, Hao L.

Source

Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, China. ypwang40@yahoo.com.

Abstract

Morchella esculenta, an edible medicinal mushroom native to China, is recognized as an unparalleled resource of healthy foods and drug discovery. This study firstly investigated the antioxidant activity of Morchella esculenta extracellular polysaccharides (MEEP). An in vitro antioxidant assay showed that MEEP exhibited strong hydroxyl radical scavenging activity and moderate 1,1-diphenyl-2-picryldydrazyl radical scavenging activity and reductive power. For antioxidant testing in vivo, MEEP were orally administered over a period of 60 days in a d-galactose induced aged mice model. Administration of the polysaccharides inhibited significantly the formation of malondialdehyde livers and serums, and raised the activities of antioxidant enzymes and the total antioxidant capacity in a dose-dependent manner. Furthermore, we also observed that MEEPs markedly enhanced the body’s immune system by measuring macrophage phagocytosis and splenocyte proliferation in d-galactose induced mice. These findings suggest that EPs from Morchella esculenta are a promising source of natural antioxidants and immunoenhancing drugs.

Evaluation of free radical scavenging activity of morel mushroom, Morchella esculenta mycelia: a potential source of therapeutically useful antioxidants.

Nitha B, De S, Adhikari SK, Devasagayam TP, Janardhanan KK.

Source

Department of Microbiology, Amala Cancer Research Centre, Thrissur, India.

Abstract

Cellular damage caused by reactive oxygen species (ROS) has been implicated in several diseases and antioxidants are known to protect the body from this damage. Antioxidants thus, have gained significant importance in human health. The search for effective, non-toxic natural compounds with antioxidant activity has intensified in recent years. Mycelia of a number mushrooms have recently been successfully used for the development of novel pharmaceutical products. We examined the aqueous-ethanol extract of cultured mycelia of the morel mushroom, Morchella esculenta (L.) Pers. (Morchellaceae) for its ability to scavenge super oxide, hydroxyl, nitric oxide, 2,2′-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals as well as for inhibition of lipid peroxidation. The extract efficiently scavenged all these radicals and also inhibited lipid peroxidation. Ferric reducing antioxidant power (FRAP) assay indicated the hydrogen donating capacity of the extract. The pulse radiolysis studies using ABTS and carbonate radical (CO(3)(*-)) showed that the extract significantly carried out the decay of these radicals in a concentration-dependent manner. In conclusion, the investigation showed that the morel mushroom mycelium is an excellent source of antioxidants which are capable of imparting protection at different levels. The findings suggest the potential therapeutic use of morel mushroom, M. esculenta mycelia as an efficient antioxidant.

Morchella esculenta

Basionym

Phallus esculentus L.

Synonyms

Morchella esculenta var. rotunda (Fr.) I.R. Hall
Morchella esculenta a rotunda Fr.
Morchella rotunda (Fr.) Boud.
Morchella rotunda var. esculenta (L.) Jacquet.
Morellus esculentus (L.) Eaton
Phallus esculentus L.

Common names

Common morel
Yellow morel
Hickory chick
Sponge mushroom
Guchhi (Indian)

Description

Cap: 3-6 cm diameter, 4-8 cm long; pale brownish cream, yellow to tan or pale brown to grayish brown; globose to ovoid; surface covered with irregularly interwoven pits of various shapes, framed by irregular ridges following the pits; edges of the ridges usually not darker than the pits.
Stem: 2-8 cm long, 2-4 cm in diameter,
glabrous, round, much larger at the base, wrinkled, grooved longitudinally, covered with small scurfytufts just beneath the cap, whitish, becoming ochraceous in age, fragile, hollow.
Asci: long cylindrical,
hyaline, 280-320 x 18-22 µm.
Flesh: waxy, thin, whitish.
Spores: 18-25 x 11-15 µm,
ellipsoid, smooth.
Spore print: yellow.
Habitat: singly or in groups on the ground of mixed open woods, pastures and hillsides on sandy ground, sometimes in rows or partial rings. Frequently found in old burned-over woods in spring, late April to June.

The morel and its relatives are among the most highly prized of the edible fungi. Despite considerable research effort, commercial cultivation of this mushroom has not been successful. However, the mycelia, grown in liquid culture, are used as food and food-flavoring materials, and also in the formulation of nutraceuticals and functional foods.
In the Himalayas, morels are cooked as food and used in medicine and health care systems by the traditional societies and also used clinically. Sometimes, the locals will set the ground on fire assuming that such a practice will improve its yield, although this practice has a negative impact on the forest ecosystem (
Prasad et al., 2002).

Use in Traditional Chinese Medicine

Morchella species are used in Traditional Chinese Medicine to treat indigestion, phlegm, croup, and shortness of breath (Ying et al., 1987).

Nutritional properties
Mineral composition

The mineral content of M. esculenta fruit bodies has been determined by inductively coupled plasma atomic emission spectrometry (Dursun et al., 2006). Values (in mg/kg) obtained were as follows:

Ag= 0.4±0.4
Al= 17286±779
As= 9.6±0
B= 19.7±8.5
Bi= 0
Ca= 33787±707
Cd= 1.1±0.1
Cr= 59.2±27.6
Cu= 12.7 ± 0.5
Fe= 7858.9 ± 188.3
Ga= 4.5 ± 2.6
K= 808.3 ± 354.5
Li= 19.5 ± 1.2
Mg= 4254.9 ± 18.4
Mn= 157.7 ± 6.5
Na= 4193.5 ± 260.6
Ni= 73.2 ± 2.2
P= 14 607.6 ± 447.9
Pb= 2.3 ± 0.4
Se= 8.0 ± 3.1
Sr= 90.6 ± 3.3
Ti= 0
Zn= 57.5 ± 1.2

Detailed information about the composition of taste components from cultured mycelia has been reported (Tsai et al., 2006).

Bioactive compounds

A nonprotein amino acid, cis-3-amino-l-proline,has been found in both the fruiting bodies (Hatanaka, 1969) as well as the growth medium and cultured mycelia of Morchella esculenta (Moriguchi et al., 1979). Three γ-glutamyltranspeptidase enzymes (MW of 155,000 (I), 219,000 (II) and 102,000 (III)) were partially purified from the cell free extracts of the cultured mycelia. All of them catalyzed both hydrolysis and transpeptidation of various γ-glutamyl compounds (Moriguchi et al., 1986).

Wei Yun et al., 2000, have purified and characterized two solublepolysaccharide components (MEP-SP2 and MEP-SP3) obtained fromMorchella esculenta grown in liquid culture.  MEP-SP2 (MW=23kDa) is made of the monosaccharides mannose, glucose, arabinose and galactose in the mole ratio of 1.75:4.13:0.71:0.68. The main chains of MEP-SP2 have an α-pyranglycoside linkage. MEP-SP3 (MW=44 kDa) consists of xylose, glucose, mannose, fructose, arabinose and galactose in a mole ratio of 3.58: 14.9:3.85:1.77:51.3:0.53.

Bisakowski et al., 2000, have reported on the extraction, partial purification, and characterization of lipoxygenase activity in M. esculenta. Lipoxygenase, an enzyme that catalyses the hydroperoxidation of linoleic acid and other polyunsaturated fatty acids containing a cis,cis-1,4-pentadiene moiety, has potential biotechnological applications for the bioconversion of lipid-rich byproducts into natural flavors.

Medicinal Properties
Antitumor activity

The antitumor activity of a 50% ethanolic extract of Morchella esculentamycelium grown in submerged culture was determined by the mouse solid tumor model induced by Daltons Lymphoma Ascites cells. Oral administration of 1 g/kg body weight of the morel extract resulted in a 74.1% inhibition in tumor volume and 79.1% decrease in tumor weight 30 days after tumor cell implantation (Nitha and Janardhanan, 2005). Later research further confirmed the antitumor activity of the extract against both ascites and solid tumours (Nitha et al., 2007).

Antioxidant activity

Methanolic extracts prepared from the mycelia of M. esculenta showed high antioxidant activity (85.4%) at 25 mg/ml; for comparison, the activities of the common antioxidants ascorbic acid, α-tocopherol and BHA were 36.9%, 80.5% and 98.1% (at 0.5 mg/ml), respectively.  Expressed as EC50 values (the effective concentration at which the antioxidant activity is 50%), the antioxidant activity was 2.78±0.14. Similarly, the reducing power was determined to be 1.25±0.06, the scavenging effect on DPPH radicals was 3.71±0.03, and the chelating effect on ferrous ions was 3.55±0.01. The relatively high content of total phenols was suggested to contribute to the mushroom’s antioxidative capabilities (Mau et al., 2004).

Anti-inflammatory activity

Anti-inflammatory activity of a 50% ethanolic extract of Morchella esculenta mycelium grown in submerged culture has been determined by carrageenan induced acute and formalin induced chronic inflammatory models. Oral administration of 500 mg/kg body weight of extract showed 66.6% and 64.2% inhibition of acute and chronic inflammation, respectively (Nitha and Janardhanan, 2005). Later work showed further elaborated on the dose-dependent inhibition of both acute and chronic inflammation, and suggested that the activity is comparable to that of the standard reference drug, Diclofenac (Nitha et al., 2007).

Immune enhancement

 

An immunostimulatory high-molecular-weight (~1000 kDa) galactomannan polysaccharide has been isolated from morel fruit bodies. This polysaccharide, which accounts for about 2.0% of the morel’s dry weight, contains 62.9% mannose, 20.0% galactose, and smaller amounts of N-acetyl glucosamine, glucose and rhamnose.  The immunostimulatory activities of various morel extracts were measured using a luciferase reporter gene bioassay, where luciferase expression results from the binding of NF-kappa B. It was determined that at a concentration of 3.0 µg/mL, the galactomannan polysaccharide increased NF-kappa B directed luciferase expression in THP-1 human monocytic cells to levels 50% of those achieved by maximal activating concentration (10 µg/mL) of lipopolysaccharide. The authors speculate that although the high molecular weight of the polysaccharide precludes it from being absorbed orally, it may have therapeutic effects by interacting directly with the mucosal immune system of the gastrointestinal tract (Duncan et al., 2002).

Rispondi